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Summary: The disconnectors belong to elements widely used in electrical power engineering and apparatus technology for 
disconnecting various electric circuits. Usually they work without voltage (the circuit is first switched off by a circuit 
breaker). Nevertheless, in a fault regime the contacts of the disconnector may carry the full voltage, which may result in the 
electric arc between them at the moment when the movable contact approaches to the fixed one. In order to estimate this 
moment it is necessary to know the time evolution of the electric field in the domain between both contacts. This problem is 
solved in 3D (in somewhat simplified geometry) by the integral technique. The theoretical analysis is supplemented with an 
illustrative example whose results are discussed.  

 
1. INTRODUCTION  

Nowadays, the distribution of electric fields in 
linear systems containing electrodes carrying pre-
scribed potentials is mostly solved by the differential 
techniques, prevailingly by the finite element 
method (see, for example, [1], [2] and [3]). This 
method is implemented practically in all available 
professional codes (Flux, OPERA, MagNet and lot 
of others). It works reliably and the results calcu-
lated usually well correspond with the physical real-
ity. 

From time to time, however, its employment in 
more complicated cases is not so advantageous. A 
typical example is a 3D electric field whose parts 
move with respect to one another. And when the 
solved domain is, moreover, large, two serious prob-
lems may appear: 
• The domain must be remeshed at each time 

level in accordance with the instantaneous posi-
tions of the movable parts. 

• Lack of the capacity of the computer necessary 
for generation of a sufficiently fine discretiza-
tion mesh (the mesh must remain relatively 
rough, which may negatively affect the results 
of computation). 

In such cases the integral method may represent 
a powerful alternative. Of course, its principal ideas 
are not new. The method is described in numerous 
references ([4], [5], [6] and others), but its wider 
applications for larger problems are rather rare, due 
to several serious lacks listed below: 
• The corresponding integral operator (the solu-

tion is described by the Fredholm integral equa-
tion of the first kind) is not well-posed in the 
Hadamard sense and sometimes it has to be 
regularized in order to obtain correct results. 
But the existing methods of regularization [7], 
[8] start from the assumption of the knowledge 
of at least approximate solution and from far 
they cannot be used for any kernel function. 

• The method works with fully or densely popu-
lated system matrices. This means that a lot of 
memory has to be allocated for the correspond-

ing operations and its order (even for good PCs) 
cannot exceed about .  410

• Problems with the evaluation of multiple inte-
grals, particularly when they are improper. On 
the other hand, their values are always finite 
both in 2D and 3D. 

Nevertheless, some drawbacks of the method 
may be reduced using special advanced techniques. 
For example, the number of the degrees of freedom 
(DOFs) of the task can significantly drop when us-
ing the higher-order technique (the distribution of 
electric field in the elements is supposed not con-
stant or linear as is usual for the classical algorithms, 
but as a linear combination of more base functions 
that are of a polynomial character). 

The authors have been dealing with the applica-
tion of various integral techniques for solving se-
lected problems of electromagnetism for several 
years. They developed their own methodology and a 
code in Matlab that they used for solving several 2D 
and simple 3D tasks [9], [10]. This paper presents 
the solution of a fully 3D example.  

2. CONTINUOUS MATHEMATICAL MODEL 

Consider a system of n  3D charged metal bodies 
1, , nΩ Ω…  placed in the air (Fig. 1). The bodies 

with potentials 1, , nϕ ϕ…  carry charges . 
All of them may be subject to motion. 

1, , nQ Q…

 
Fig.  1. A system of charged electrodes in the air 
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The task is to find at any given time instant: 

• The distribution of charge on their surfaces. 
• The distribution of electric field in the domain. 
• The forces acting among the bodies. 

First it is necessary to determine the electric po-
tential ϕ  at an arbitrary exterior or surface point X . 
The potential ( )Xϕ  is given by relation 
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where the symbol  denotes the boundary of body 
 with surface charge density 

iS

iΩ , 1, ,i i nσ = … . Fur-
ther, X ir r−  is the distance between point X  and 
integration point of the i th surface and finally − 0ϕ  
is a constant. 

In the next step we will find the charge distribu-
tion on the surfaces of all bodies . Using 
the fact that the surface of any perfectly electrically 
conductive body is an equipotential area, for any 
point of 

1, , nΩ Ω…

j jX S∉  we obtain a system of the first-
kind Fredholm integral equations in the form 
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As far as the whole system is electrically neutral, 
it can be supplemented with the conditions 
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After computation of the distribution of charge 
density , 1, ,i iσ = …  over the surfaces of all 
charged bodies we obtain the complete tool for 
evaluating the potential ϕ  at every point in the in-
vestigated domain. 

Finally, the Coulomb force acting on the body 
jΩ  is 

,3
0 1 ,

1 d d ,
4

, 1, , .

j i

n
j i

j j i i jS S
i j i

S S
r

i j n

σ σ
πε =

= ⋅ ⋅

=

∑ ∫∫ ∫∫
…

w wF r
    (5) 

 
3. DISCRETE MATHEMATICAL MODEL 

This paragraph is devoted to the methodology of 
the numerical processing of (1) and (2) without 
preliminary regularization. In this case the first step 
of the algorithm is the discretization of all surfaces 

. The best way is to use suitable triangular 
meshes that are able to appropriately cover (with a 
small error) almost every surface. Then it is neces-
sary to suggest the distribution of the charge density 

inside every element. As mentioned before, the sim-
plest approach is to consider it there constant. The 
assembly of the system matrix is then very fast, but 
at the expense of a high number of DOFs and 
smaller accuracy.  

1, , nS S…

Generally, the distribution of charge density in 
the l − th element of the th surface may be ex-
pressed as 
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Here  are the coefficients and , ,k l ta ( ), , , ,k l tf x y z  are 
the partial testing functions.  Symbol ,k ls  denotes 
the selected number of approximation terms in the 
corresponding element. With respect to further op-
erations with these approximations it is advanta-
geous when these functions satisfy the condition of 
orthogonality, i.e.  
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These approximations have to be substituted into 
(2) and (3). Now the system (2) must gradually be 
multiplied by particular testing functions used in the 
cell with index  and integrated over its surface 

. The result is a system of linear equations 
providing the coefficients  in particular cells. 

kl
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4. ILLUSTRATIVE EXAMPLE  

The methodology is demonstrated on the compu-
tation of time-variable electric field of a disconnec-
tor. The disconnector is depicted in Fig. 2  

 

Fig.  2. Full view of the disconnector 

The device has two contacts. While the fixed 
contact is represented by a terminal (in the right 
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upper part), the movable contact is represented by 
the switching knife (in the middle on the top). For 
the calculation we used a substantially simplified 
arrangement according to Fig. 3. This figure also 
contains the principal dimensions of the contacts. 

 
Fig.  3. Details of both contacts of the disconnector 

The potential of the fixed contact is 0 V while 
the potential of the knife is 14 V. The computa-
tions were carried out using the zero-order method.  

00

The distribution of electric field (potential and 
electric field strength) was calculated for every 15°. 
The discretization mesh contained about ele-
ments, some of them can be seen in Fig. 4 showing 
the distribution of the potential in the plane of sym-
metry in the proximity of both contacts for angle 75° 
(for 90° both contacts are connected by the knife).  

6000

 
Fig.  4. Distribution of the electric potential in the domain 

of both contacts for angle 75° 

Fig. 5 depicts the distribution of the module of 
electric field strength E along the line AB (see Fig. 
3) for particular positions of the knife differing by 
defined angles.  

In order to validate the results obtained, the same 
3D arrangement was also calculated by the finite 
element method using the code COMSOL. Unfortu-
nately, we could not use a sufficiently dense 3D 
mesh because we were limited by about 800000 
elements (computer memory). 

 
Fig.  5. Distribution of the module of electric field strength 
E along line AB (see Fig. 4) for different positions of the 

knife 

The results are of the same character (see Fig. 6), 
and we were not able to decide which of them is 
more accurate. The principal reason is that our pos-
sibilities of verifying the convergence of the results 
on the fineness of the discretization mesh were 
rather limited by the range of the problem. 

 
Fig.  6. Comparison of the results for one selected 
 position of the knife (integral method versus finite 

 element method) 

5. CONCLUSION 

The integral method may represent quite a pow-
erful tool for investigating 3D large electrostatic 
fields. The time of computation is comparable or 
even shorter due to the number of mesh elements 
that is approximately by two orders lower than in 
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case of FEM. Nevertheless, the results should be 
always validated by a suitable experiment or another 
reliable method of computation. 
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